Polyline Feature Extraction for Land Cover Classification using Hyperspectral Data

نویسندگان

  • Alex Henneguelle
  • Joydeep Ghosh
  • Melba M. Crawford
چکیده

Prediction of landcover types from airborne/spaceborne sensors is an important classification problem in remote sensing. Due to recent advances in sensor technology, it is now possible to acquire hyperspectral data simultaneously in ∼200 bands, each of which measures the integrated response of a target over a narrow window of the electromagnetic spectrum. This unprecedented spectral resolution can provide vastly improved mapping of several types of landcover and monitoring of ecological changes. However, the increased dimensionality also constitutes a challenge in terms of storage and analysis. This paper presents a Polyline Feature Extraction (PFE) technique that exploits the spectral correlations between certain adjacent bands in hyperspectral data, to reduce dimensionality without sacrificing discrimination power. It uses an interpretable piecewise linear representation of the data that is somewhat robust to environmental changes. Using the Binary Hierarchical Classifier Framework for multi-class problems, PFE’s effectiveness is demonstrated on two large hyperspectral datasets obtained over the Texas and Florida coasts respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Artificial Neural Network Approach for Land Cover Classification of Fused Hyperspectral and Lidar Data

Hyperspectral remote sensing images are consisted of several hundreds of contiguous spectral bands that can provide very rich information and has the potential to differentiate land cover classes with similar spectral characteristics. LIDAR data gives detailed height information and thus can be used complementary with Hyperspectral data. In this work, a hyperspectral image is combined with LIDA...

متن کامل

Feature Extraction of Hyperspectral Images Using Matching Pursuit

Hyperspectral images contain rich and fine spectral information, an improvement of land use/cover classification accuracy is expected from the use of such images. However, the classification methods that have been successfully applied to multispectral data in the past are not as effective as to hyperspectral data. The major cause is that the size of training data set does not correspond to the ...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003